
Big Data

Predicting The Outcome of MMA Fights

Research 1

Overview 1.1
The data set which I got from, https://www.kaggle.com/datasets/rajeevw/ufcdata (11/10/2023, 10:45)
includes every main card UFC bout from 1993 to 2021. Some of the data includes the fighters weight,
height, reach, age, fighters stance, who won and various other statistics within the fight.

I chose this dataset as I have an interest in the sport of mixed martial arts, and I wanted to know how
accurately I could predict the outcome of the fights by using supervised machine learning.

Objectives 1.2
With this data set I want to identify patterns within the fights that i could use to predict which fighter would
win. This will be based off the fighter's stance and further variables within the fight, for example; height,
reach etc.

Peer Reviewed Paper 1.3
The article starts by providing a comprehensive overview of mixed martial arts (MMA), tracing its historical
evolution and its current landscape. It details the structure of MMA contests, covering regulations, weight
classes, and judging criteria while drawing comparisons and contrasts with boxing.

Addressing the complexity of predicting MMA fights, the article acknowledges the unpredictability of
combat sports, citing the ubiquitous nature of unforeseen events often encapsulated by the phrase 'A
Puncher's Chance.' It meticulously outlines the data acquisition process and subsequent modifications,
emphasizing the intricate estimation of individual fighter skills. This estimation encompasses various aspects,
striking abilities, takedown proficiency, submission accuracy, knockout probabilities, and control times per
takedown.

Central to the article is the introduction of the Markov chain model, a sophisticated analytical approach
integrating diverse fighter skill data to refine the accuracy of predicting fight outcomes. This model
incorporates four key dynamics: Standing States, Ground States, Model Complexity, and Simulation,
meticulously simulating potential fight scenarios based on fighter strategies, position effectiveness, action
rates, and fight durations.

Furthermore, the article details the modelling of judges' decisions using logistic regression and ordered
probit regression models. It compares these models with benchmark approaches like Bradley–Terry and
logistic regression, emphasizing their respective strengths and limitations in predicting fight outcomes.

https://www.kaggle.com/datasets/rajeevw/ufcdata

Leveraging MMA fight data spanning from 2001 to 2018, the study achieves a commendable 61.77%
accuracy in forecasting fight results, showcasing the efficacy of the proposed predictive model. However, the
article underscores the continuous need for improvement, advocating for more granular data, diverse
methodological approaches, and adaptability to dynamic trends for heightened predictive precision.

In essence, the article presents an advanced framework for anticipating MMA fight outcomes by
amalgamating fighter skill estimations with empirical fight data. Despite notable success, it underscores the
persistent pursuit of refinement and advancement for enhanced predictive accuracy and applicability.

Link: https://www.sciencedirect.com/science/article/pii/S0169207022000073?via%3Dihub#section-cited-by

Code 2

Imports 2.1

Here we are simply connecting to the .csv file giving it the variable name; df, for ease of calling.

Preparing the Data 2.2
Before analyzing, it's crucial to review and comprehend the .csv file's data by assessing columns and data
types.

The dataset contains 1203 rows, and 144 columns
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1203 entries, 0 to 1202

In [1]: #import necessary libraries
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.io as pio
pio.renderers.default = 'notebook'

In [2]: df = pd.read_csv('data.csv')

In [3]: #Preparing/Checking Data
#===================================

data size
print(f'The dataset contains {df.shape[0]} rows, and {df.shape[1]} columns')

Always good to check the names of the columns
df.columns

and check the data types
df.info()

for every column
for i in df.columns:
 # print how many features it has
 print(i,len(df[i].unique()))

df.describe()

https://www.sciencedirect.com/science/article/pii/S0169207022000073?via%3Dihub#section-cited-by

Columns: 144 entries, R_fighter to R_age
dtypes: bool(1), float64(102), int64(33), object(8)
memory usage: 1.3+ MB
R_fighter 536
B_fighter 632
Referee 114
date 477
location 150
Winner 2
title_bout 2
weight_class 13
B_avg_KD 244
B_avg_opp_KD 158
B_avg_SIG_STR_pct 735
B_avg_opp_SIG_STR_pct 736
B_avg_TD_pct 616
B_avg_opp_TD_pct 614
B_avg_SUB_ATT 305
B_avg_opp_SUB_ATT 275
B_avg_REV 163
B_avg_opp_REV 159
B_avg_SIG_STR_att 917
B_avg_SIG_STR_landed 787
B_avg_opp_SIG_STR_att 934
B_avg_opp_SIG_STR_landed 771
B_avg_TOTAL_STR_att 944
B_avg_TOTAL_STR_landed 849
B_avg_opp_TOTAL_STR_att 959
B_avg_opp_TOTAL_STR_landed 828
B_avg_TD_att 490
B_avg_TD_landed 400
B_avg_opp_TD_att 478
B_avg_opp_TD_landed 390
B_avg_HEAD_att 908
B_avg_HEAD_landed 712
B_avg_opp_HEAD_att 894
B_avg_opp_HEAD_landed 729
B_avg_BODY_att 623
B_avg_BODY_landed 588
B_avg_opp_BODY_att 627
B_avg_opp_BODY_landed 573
B_avg_LEG_att 574
B_avg_LEG_landed 555
B_avg_opp_LEG_att 588
B_avg_opp_LEG_landed 552
B_avg_DISTANCE_att 905
B_avg_DISTANCE_landed 746
B_avg_opp_DISTANCE_att 895
B_avg_opp_DISTANCE_landed 753
B_avg_CLINCH_att 615
B_avg_CLINCH_landed 558
B_avg_opp_CLINCH_att 595
B_avg_opp_CLINCH_landed 558
B_avg_GROUND_att 636
B_avg_GROUND_landed 569
B_avg_opp_GROUND_att 592
B_avg_opp_GROUND_landed 520
B_avg_CTRL_time(seconds) 1013
B_avg_opp_CTRL_time(seconds) 1022
B_total_time_fought(seconds) 991
B_total_rounds_fought 67
B_total_title_bouts 12
B_current_win_streak 11
B_current_lose_streak 6
B_longest_win_streak 11
B_wins 21

B_losses 14
B_draw 1
B_win_by_Decision_Majority 3
B_win_by_Decision_Split 6
B_win_by_Decision_Unanimous 11
B_win_by_KO/TKO 12
B_win_by_Submission 11
B_win_by_TKO_Doctor_Stoppage 3
B_Stance 2
B_Height_cms 21
B_Reach_cms 24
B_Weight_lbs 23
R_avg_KD 374
R_avg_opp_KD 227
R_avg_SIG_STR_pct 898
R_avg_opp_SIG_STR_pct 879
R_avg_TD_pct 787
R_avg_opp_TD_pct 776
R_avg_SUB_ATT 444
R_avg_opp_SUB_ATT 390
R_avg_REV 215
R_avg_opp_REV 229
R_avg_SIG_STR_att 1036
R_avg_SIG_STR_landed 955
R_avg_opp_SIG_STR_att 1045
R_avg_opp_SIG_STR_landed 919
R_avg_TOTAL_STR_att 1041
R_avg_TOTAL_STR_landed 976
R_avg_opp_TOTAL_STR_att 1069
R_avg_opp_TOTAL_STR_landed 977
R_avg_TD_att 669
R_avg_TD_landed 580
R_avg_opp_TD_att 672
R_avg_opp_TD_landed 549
R_avg_HEAD_att 1021
R_avg_HEAD_landed 877
R_avg_opp_HEAD_att 1013
R_avg_opp_HEAD_landed 885
R_avg_BODY_att 805
R_avg_BODY_landed 771
R_avg_opp_BODY_att 799
R_avg_opp_BODY_landed 745
R_avg_LEG_att 778
R_avg_LEG_landed 740
R_avg_opp_LEG_att 768
R_avg_opp_LEG_landed 753
R_avg_DISTANCE_att 1026
R_avg_DISTANCE_landed 916
R_avg_opp_DISTANCE_att 1024
R_avg_opp_DISTANCE_landed 897
R_avg_CLINCH_att 796
R_avg_CLINCH_landed 750
R_avg_opp_CLINCH_att 773
R_avg_opp_CLINCH_landed 737
R_avg_GROUND_att 828
R_avg_GROUND_landed 750
R_avg_opp_GROUND_att 743
R_avg_opp_GROUND_landed 682
R_avg_CTRL_time(seconds) 1094
R_avg_opp_CTRL_time(seconds) 1105
R_total_time_fought(seconds) 1082
R_total_rounds_fought 75
R_total_title_bouts 15
R_current_win_streak 14
R_current_lose_streak 5
R_longest_win_streak 16

A new column, "A_Winner," is added to the DataFrame to clarify fight outcomes. This enhances comparison
ease. Saving the DataFrame to a new CSV file boosts model usability/reusability. This separation enables
additional data incorporation without altering result files, ensuring a more organized and presentable
dataset

The current dataset will undergo deeper cleaning later despite minimal changes. To enhance model
reusability, a separate .csv file for results will be created. This allows for adding new fights and introducing
additional data into the model for future expansion.

R_wins 23
R_losses 15
R_draw 1
R_win_by_Decision_Majority 3
R_win_by_Decision_Split 6
R_win_by_Decision_Unanimous 11
R_win_by_KO/TKO 12
R_win_by_Submission 13
R_win_by_TKO_Doctor_Stoppage 3
R_Stance 2
R_Height_cms 21
R_Reach_cms 24
R_Weight_lbs 25
B_age 27
R_age 26

Winner B_avg_KD B_avg_opp_KD B_avg_SIG_STR_pct B_avg_opp_SIG_STR_pct B_avg_TD_pct B_avg_

count 1203.000000 1203.000000 1203.000000 1203.000000 1203.000000 1203.000000

mean 0.640898 0.263192 0.173225 0.454541 0.425203 0.297864

std 0.479937 0.385142 0.312796 0.123221 0.125891 0.262875

min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

25% 0.000000 0.000000 0.000000 0.379388 0.345781 0.062500

50% 1.000000 0.062500 0.000000 0.451875 0.417109 0.250000

75% 1.000000 0.500000 0.250000 0.525000 0.497935 0.500000

max 1.000000 5.000000 2.000000 1.000000 1.000000 1.000000

8 rows × 135 columns

Out[3]:

In [4]: df['A_Winner'] = '' # Initialize the column with empty strings

#Makes the actual results clearer/easier to understand
for index, row in df.iterrows():

 if row['Winner'] == 1:
 df.at[index, 'A_Winner'] = row['R_Stance']

 elif row['Winner'] == 0:
 df.at[index, 'A_Winner'] = row['B_Stance']

 else:
 #Making sure that the data is correct and the previous
 #function worked
 df.at[index, 'A_Winner'] = "Error"

Save the DataFrame to a new CSV file
df.to_csv('output.csv', index=False)

Exploring the Data 2.3

Age Graph

This graph compares how both stances fair before and after they turn 30

Columns with numerical data are isolated. Percentiles [0.1, 0.25, 0.5, 0.75] are computed. Winners in the
dataset are counted to explore age-related correlations for visualization prep.

Winner
1 771
0 432
Name: count, dtype: int64

Code styles graph with dark grid theme using Set2 colors, duplicates dataset for better visualization,
enhancing appeal and interpretation..

The 'stances' function categorizes fighter stances. If Red (R_Stance) or Blue (B_Stance) is Orthodox and wins,
it's labeled Orthodox; otherwise, it's Southpaw.

The function 'changeW' categorizes fighters in the Red and Blue corners as 'Over 30' if either R_age or B_age
is 30 or older; otherwise, it labels them 'Under 30'.

This updates the Winner column in the dataframe. It applies a function to each value in the Winner column.
If the value is Orthodox, it remains unchanged. Otherwise, it's set to Southpaw.

In [5]: #Graph for age
numeric_columns = df.select_dtypes(include=[np.number])
Select only numeric columns
quantiles = numeric_columns.quantile([0.1, 0.25, 0.5, 0.75], axis=0)
df['Winner'].value_counts()

Out[5]:

In [6]: sns.set_style('darkgrid')
sns.set_palette('Set2')
first we make a copy of the dataset to decode the variables
#(for visualisation␣purposes)
dfC = df.copy()

In [7]: # Function to determine stances
def stances(row):
 if (row["R_Stance"] == 'Orthodox' and row['Winner'] == 1 or
 row["B_Stance"] == 'Orthodox' and row['Winner'] == 0):
 return 'Orthodox'
 else:
 return 'Southpaw'

In [8]: # Function to determine the age condition
def changeW(row):
 if (row['R_age'] >= 30) or (row['B_age'] >= 30):
 return 'Over 30'
 else:
 return 'Under 30'

In [9]: # Update the 'Winner' column based on the 'Orthodox' condition
df['Winner'] = df['Winner'].apply(lambda x: 'Orthodox' if x ==
 "Orthodox" else 'Southpaw')

The code updates dataframe columns B_Stance and R_Stance based on Winner. If Winner is Orthodox, it
applies stances function; otherwise, keeps original stance.

The code uses changeW to update 'Winner' based on fighters' ages (>30 as 'Over 30', <=30 as 'Under 30')
row by row in the dataframe.

This code creates a copy of the existing DataFrame df and stores it as dfC. This copy enables independent
manipulation and analysis without altering the original dataset.

The code plots count data from 'dfC' with specified figure size, showing 'R_Stance' counts colored by
'Winner', titled 'Southpaw vs Orthodox'.

In [10]: # Update the 'B_Stance' and 'R_Stance' columns based on the
#'Winner' condition
df['B_Stance'] = df.apply(lambda row: stances(row['B_Stance']) if
 row['Winner'] == 'Orthodox' else
 row['B_Stance'], axis=1)
df['R_Stance'] = df.apply(lambda row: stances(row['R_Stance']) if
 row['Winner'] == 'Orthodox' else
 row['R_Stance'], axis=1)

In [11]: # Apply the 'changeW' function to update the 'Winner'
#column based on age condition
df['Winner'] = df.apply(changeW, axis=1)

In [12]: # Create a copy of the DataFrame
dfC = df.copy()

In [13]: # Plot the data
sns.set(rc={'figure.figsize':(9,7)})
sns.countplot(data=dfC, x='R_Stance', hue='Winner')
plt.title('Southpaw vs Orthodox\n')
plt.show()

This graph tell us a few things:

1. That when both the southpaw and orthodox fighters are over the age of 30, the southpaw fighter
seems to just take the edge

2. when both the southpaw and orthodox fighters are under the age of 30, the southpaw fighter seem to
have a quite sizable advantage

Reach Graph

This graph compares how both stances fair when they have the dis/advantage in Reach

Numeric columns are isolated from a dataframe, their quantiles are computed, and Winner counts are
gathered from the dataframe.

Winner
Over 30 906
Under 30 297
Name: count, dtype: int64

In [14]: #graph for reach
Select only numeric columns
numeric_columns = df.select_dtypes(include=[np.number])
quantiles = numeric_columns.quantile([0.1, 0.25, 0.5, 0.75], axis=0)
df['Winner'].value_counts()

Out[14]:

Matplotlib's style is set to darkgrid while the colour palette is adjusted to Set2. The dataset is copied for
variable decoding.

The function stances categorizes based on fighter stances, returning Orthodox if certain conditions are met,
else Southpaw.

The changeW function assesses reach comparisons between fighters, labelling either Reach Advantage or
Reach Disadvantage based on the condition.

The Winner column is updated using a lambda function; if Orthodox, it remains unchanged, otherwise, it's
set to Southpaw.

Update Winner using changeW by age conditions; duplicate DataFrame df as dfC for storage and
manipulation.

Matplotlib plot with (9,7) size shows count of R_Stance in dfC data, comparing with 'Winner'. Title: Southpaw
vs Orthodox. Displayed plot.

In [15]: sns.set_style('darkgrid')
sns.set_palette('Set2')
first we make a copy of the dataset to decode the variables
dfC = df.copy()

In [16]: # Function to determine stances
def stances(row):
 if (row["R_Stance"] == 'Orthodox' and row['Winner'] == 1 or
 row["B_Stance"] == 'Orthodox' and row['Winner'] == 0):
 return 'Orthodox'
 else:
 return 'Southpaw'

In [17]: # Function to determine the age condition
def changeW(row):
 if (row['R_Reach_cms'] >= row['B_Reach_cms']):
 return 'Reach Advantage'
 else:
 return 'Reach Disadvantage'

In [18]: # Update the 'Winner' column based on the 'Orthodox' condition
df['Winner'] = df['Winner'].apply(lambda x: 'Orthodox' if x ==
 "Orthodox" else 'Southpaw')

In [19]: # Update the 'B_Stance' and 'R_Stance' columns based on the
#'Winner' condition
df['B_Stance'] = df.apply(lambda row: stances(row['B_Stance']) if
 row['Winner'] == 'Orthodox' else
 row['B_Stance'], axis=1)
df['R_Stance'] = df.apply(lambda row: stances(row['R_Stance']) if
 row['Winner'] == 'Orthodox' else
 row['R_Stance'], axis=1)

In [20]: # Apply the 'changeW' function to update the 'Winner' column
#based on age condition
df['Winner'] = df.apply(changeW, axis=1)

Create a copy of the DataFrame
dfC = df.copy()

This graph tell us a few things:

1. That when both the fighters have the reach advantage, although close the orthodox fighter just edges it
2. When both the fighters have the reach disadvantage, the southpaw has a significant advantage

Height Graph

This graph compares how both stances fair when they have the dis/advantage in Height

First isolates numeric columns, compute their quantiles, and counts Winner values for height related
graphing purposes.

Winner

In [21]: # Plot the data
sns.set(rc={'figure.figsize':(9,7)})
sns.countplot(data=dfC, x='R_Stance', hue='Winner')
plt.title('Southpaw vs Orthodox\n')
plt.show()

In [22]: #graph for height
numeric_columns = df.select_dtypes(include=[np.number])
Select only numeric columns
quantiles = numeric_columns.quantile([0.1, 0.25, 0.5, 0.75], axis=0)
df['Winner'].value_counts()

Out[22]:

Reach Advantage 696
Reach Disadvantage 507
Name: count, dtype: int64

Seaborn configures darkgrid style, Set2 palette for plots; 'df' copied for variable decoding in visualizations.

Function categorizes stances, Orthodox if conditions (R_Stance, B_Stance, Winner) met, else labels as
Southpaw based on outcomes.

The function changeW assesses height, assigning Height Advantage if Red corner is taller than Blue; else,
Height Disadvantage.

Winner column update,:iIf value is Orthodox, unchanged; else set to Southpaw.

Update dataframe's B_Stance and R_Stance using Winner condition. Apply stances function for Orthodox
winner; keep original values otherwise.

Code updates'Winne' column in dataframe using'change' function, comparing Red and Blue corner heights
for advantages/disadvantages.

DataFrame dfC created as an independent copy of df for separate analysis and manipulation, preserving

In [23]: sns.set_style('darkgrid')
sns.set_palette('Set2')
first we make a copy of the dataset to decode the variables
#(for visualisation␣purposes)
dfC = df.copy()

In [24]: # Function to determine stances
def stances(row):
 if (row["R_Stance"] == 'Orthodox' and row['Winner'] == 1 or
 row["B_Stance"] == 'Orthodox' and row['Winner'] == 0):
 return 'Orthodox'
 else:
 return 'Southpaw'

In [25]: # Function to determine the age condition
def changeW(row):
 if (row['R_Height_cms'] >= row['B_Height_cms']):
 return 'Height Advantage'
 else:
 return 'Height Disadvantage'

In [26]: # Update the 'Winner' column based on the 'Orthodox' condition
df['Winner'] = df['Winner'].apply(lambda x: 'Orthodox' if x ==
 "Orthodox" else 'Southpaw')

In [27]: # Update the 'B_Stance' and 'R_Stance' columns based on the 'Winner'
#condition
df['B_Stance'] = df.apply(lambda row: stances(row['B_Stance']) if
 row['Winner'] == 'Orthodox' else
 row['B_Stance'], axis=1)
df['R_Stance'] = df.apply(lambda row: stances(row['R_Stance']) if
 row['Winner'] == 'Orthodox' else
 row['R_Stance'], axis=1)

In [28]: # Apply the 'changeW' function to update the 'Winner' column
#based on age condition
df['Winner'] = df.apply(changeW, axis=1)

original dataset integrity.

A Seaborn code segment plots a count based on categories in DataFrame dfC (R_Stance), using 'Winner' for
color, with 9x7 figure, titled "Southpaw vs Orthodox," displaying the plot.

This graph tell us a few things:

1. That when both the fighters have the Height advantage, although close the southpaw fighter edges it
2. When both the fighters have the reach disadvantage, the southpaw has a significant advantage

Experience Graph

This graph compares how both stances fair when they have the dis/advantage in Ring Experience

Isolate numeric columns, calculate [0.1, 0.25, 0.5, 0.75] percentiles, and count "Winner" values, likely for

In [29]: # Create a copy of the DataFrame
dfC = df.copy()

In [30]: # Plot the data
sns.set(rc={'figure.figsize':(9,7)})
sns.countplot(data=dfC, x='R_Stance', hue='Winner')
plt.title('Southpaw vs Orthodox\n')
plt.show()

visualizing experiences.

Winner
Height Advantage 686
Height Disadvantage 517
Name: count, dtype: int64

ConfiguringsSeabor,: plotting style to darkgrid, color palette Set2. Dataset copied as dfC for variable
decoding in visualization.

The'stance' function sorts stances by R_Stance, B_Stance, and Winner criteria, yielding Orthodox or
Southpaw based on conditions.

The"change" function compares Red and Blue fighters' rounds, labeling Red with more or equal rounds as
'More Round Experience.'

DataFrame's Winner column updated: If value is Orthodox, unchanged; else, set to Southpaw.

Winner column updates B_Stance and R_Stance in the DataFrame based on it; if Winner is Orthodox, stances
function modifies values..

In [31]: #graph for Experience

numeric_columns = df.select_dtypes(include=[np.number])
Select only numeric columns
quantiles = numeric_columns.quantile([0.1, 0.25, 0.5, 0.75], axis=0)
df['Winner'].value_counts()

Out[31]:

In [32]: sns.set_style('darkgrid')
sns.set_palette('Set2')
first we make a copy of the dataset to decode the variables
#(for visualisation␣purposes)
dfC = df.copy()

In [33]: # Function to determine stances
def stances(row):
 if (row["R_Stance"] == 'Orthodox' and row['Winner'] == 1 or
 row["B_Stance"] == 'Orthodox' and row['Winner'] == 0):
 return 'Orthodox'
 else:
 return 'Southpaw'

In [34]: # Function to determine the age condition
def changeW(row):
 if (row['R_total_rounds_fought'] >= row['B_total_rounds_fought']):
 return 'More Round Experience'
 else:
 return 'Less Round Experience'

In [35]: # Update the 'Winner' column based on the 'Orthodox' condition
df['Winner'] = df['Winner'].apply(lambda x: 'Orthodox' if x ==
 "Orthodox" else 'Southpaw')

In [36]: # Update the 'B_Stance' and 'R_Stance' columns based on the 'Winner'
#condition
df['B_Stance'] = df.apply(lambda row: stances(row['B_Stance']) if
 row['Winner'] == 'Orthodox' else
 row['B_Stance'], axis=1)
df['R_Stance'] = df.apply(lambda row: stances(row['R_Stance']) if

The line employs 'changeW' function to update DataFrame's 'Winner' column. It iterates rows, setting
'Winner' based on Red fighter's round experience against Blue.

DataFrame df duplicated as dfC retains identical data, enabling separate analysis without altering the initial
dataset.

A count plot from DataFrame dfC: organizes R_Stance counts, colors by Winner, sized (9,7), titled "Southpaw
vs Orthodox," displayed.

 row['Winner'] == 'Orthodox' else
 row['R_Stance'], axis=1)

In [37]: # Apply the 'changeW' function to update the 'Winner' column
#based on age condition
df['Winner'] = df.apply(changeW, axis=1)

In [38]: # Create a copy of the DataFrame
dfC = df.copy()

In [39]: # Plot the data
sns.set(rc={'figure.figsize':(9,7)})
sns.countplot(data=dfC, x='R_Stance', hue='Winner')
plt.title('Southpaw vs Orthodox\n')
plt.show()

This graph tell us a few things:

1. That when the fighters have the experience advantage, the southpaw fighter has a serious advantage
2. When the fighters have the experience disadvantage, the orthodox has a significant advantage

This implies perfecting the southpaw stance takes longer than the orthodox one, but over time, it improves
performance significantly, indicating its potential superiority.

Decision Tree 2.4
This will take all of the relevant comparisons and disparities between the two fighters that were highlighted
with the graphs and uses them to determine the outcome of the fight. The % accuracy is then displayed at
the end.

First we must create the P_Winner column in our .csv file, this will for now be populated with empty strings,
but will be populated with the decision trees predicted winner though the process.

To enhance clarity, dropping numerous irrelevant columns from the messy dataset is crucial despite initial
confusion, significantly improving the dataset's relevance.

In [40]: # Initialize the column with empty strings
df['P_Winner'] = ''

In [41]: from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import pandas as pd

In [42]: # Cleaning data set
columns_to_drop = [
 'B_avg_KD', 'B_avg_opp_KD', 'B_avg_opp_SIG_STR_pct',
 'B_avg_SIG_STR_pct', 'B_avg_TD_pct', 'B_avg_opp_TD_pct',
 'B_avg_SUB_ATT', 'B_avg_opp_SUB_ATT', 'B_avg_REV',
 'B_avg_opp_REV', 'B_avg_SIG_STR_att', 'B_avg_SIG_STR_landed',
 'B_avg_opp_SIG_STR_att', 'B_avg_opp_SIG_STR_landed',
 'B_avg_TOTAL_STR_att', 'B_avg_TOTAL_STR_landed',
 'B_avg_opp_TOTAL_STR_att', 'B_avg_opp_TOTAL_STR_landed',
 'B_avg_TD_att', 'B_avg_TD_landed', 'B_avg_opp_TD_att',
 'B_avg_opp_TD_landed', 'B_avg_HEAD_att', 'B_avg_HEAD_landed',
 'B_avg_opp_HEAD_att', 'B_avg_opp_HEAD_landed',
 'B_avg_BODY_att', 'B_avg_BODY_landed', 'B_avg_opp_BODY_att',
 'B_avg_opp_BODY_landed', 'B_avg_LEG_att',
 'B_avg_LEG_landed', 'B_avg_opp_LEG_att', 'B_avg_opp_LEG_landed',
 'B_avg_DISTANCE_att', 'B_avg_DISTANCE_landed',
 'B_avg_opp_DISTANCE_att', 'B_avg_opp_DISTANCE_landed',
 'B_avg_CLINCH_att', 'B_avg_CLINCH_landed','B_avg_opp_CLINCH_att',
 'B_avg_opp_CLINCH_landed', 'B_avg_GROUND_att',
 'B_avg_GROUND_landed','B_avg_opp_GROUND_att',
 'B_avg_opp_GROUND_landed', 'B_avg_CTRL_time(seconds)',
 'B_avg_opp_CTRL_time(seconds)','B_total_time_fought(seconds)',
 'B_total_title_bouts', 'B_current_win_streak',
 'B_current_lose_streak','B_longest_win_streak', 'B_wins',
 'B_losses', 'B_draw', 'B_win_by_Decision_Majority',
 'B_win_by_Decision_Split','B_win_by_Decision_Unanimous',
 'B_win_by_KO/TKO', 'B_win_by_Submission',
 'B_win_by_TKO_Doctor_Stoppage','R_avg_KD',
 'R_avg_opp_KD', 'R_avg_SIG_STR_pct', 'R_avg_opp_SIG_STR_pct',
 'R_avg_TD_pct', 'R_avg_opp_TD_pct','R_avg_SUB_ATT',

The code cleans a DataFrame (df) by removing leading/trailing whitespaces from column names, dropping
specified columns, and removing rows with missing values.

This code initializes Decision Tree Classifier, defines features/target (df), selects columns, assigns to X/y,
performs one-hot encoding for X_encoded.

B_total_rounds_fought B_Height_cms B_Reach_cms B_Weight_lbs R_total_rounds_fought R_Height_cms R_

count 1203.000000 1203.000000 1203.000000 1203.000000 1203.000000 1203.000000 1

mean 13.638404 179.187182 183.823791 168.347465 18.943475 179.020382

std 12.795060 7.616544 9.117838 30.300749 15.567206 8.148383

min 1.000000 152.400000 152.400000 115.000000 1.000000 152.400000

25% 5.000000 175.260000 177.800000 155.000000 7.000000 172.720000

50% 9.000000 180.340000 185.420000 170.000000 15.000000 180.340000

75% 18.000000 185.420000 190.500000 185.000000 27.000000 185.420000

max 86.000000 203.200000 213.360000 265.000000 85.000000 210.820000

 'R_avg_opp_SUB_ATT', 'R_avg_REV', 'R_avg_opp_REV',
 'R_avg_SIG_STR_att', 'R_avg_SIG_STR_landed',
 'R_avg_opp_SIG_STR_att', 'R_avg_opp_SIG_STR_landed',
 'R_avg_TOTAL_STR_att', 'R_avg_TOTAL_STR_landed',
 'R_avg_opp_TOTAL_STR_att', 'R_avg_opp_TOTAL_STR_landed',
 'R_avg_TD_att', 'R_avg_TD_landed', 'R_avg_opp_TD_att',
 'R_avg_opp_TD_landed', 'R_avg_HEAD_att', 'R_avg_HEAD_landed',
 'R_avg_opp_HEAD_att', 'R_avg_opp_HEAD_landed',
 'R_avg_BODY_att', 'R_avg_BODY_landed', 'R_avg_opp_BODY_att',
 'R_avg_opp_BODY_landed', 'R_avg_LEG_att',
 'R_avg_LEG_landed', 'R_avg_opp_LEG_att', 'R_avg_opp_LEG_landed',
 'R_avg_DISTANCE_att', 'R_avg_DISTANCE_landed',
 'R_avg_opp_DISTANCE_att', 'R_avg_opp_DISTANCE_landed',
 'R_avg_CLINCH_att', 'R_avg_CLINCH_landed',
 'R_avg_opp_CLINCH_att', 'R_avg_opp_CLINCH_landed',
 'R_avg_GROUND_att', 'R_avg_GROUND_landed','R_avg_opp_GROUND_att',
 'R_avg_opp_GROUND_landed', 'R_avg_CTRL_time(seconds)',
 'R_avg_opp_CTRL_time(seconds)','R_total_time_fought(seconds)',
 'R_total_title_bouts', 'R_current_win_streak',
 'R_current_lose_streak','R_longest_win_streak', 'R_wins',
 'R_losses', 'R_draw', 'R_win_by_Decision_Majority',
 'R_win_by_Decision_Split','R_win_by_Decision_Unanimous',
 'R_win_by_KO/TKO', 'R_win_by_Submission',
 'R_win_by_TKO_Doctor_Stoppage', 'Referee'
]

In [43]: # Remove leading/trailing whitespaces from column names
df.columns = df.columns.str.strip()

Drop columns
df = df.drop(columns_to_drop, axis=1)

Drop rows with missing values
df = df.dropna()
df.describe()

Out[43]:

In [44]: # Initialize the Decision Tree Classifier
clf = DecisionTreeClassifier(random_state=42)

Define features and target variable

DataFrame df split based on 'P_Winner'. X_encoded, y used for train-test split. Model (clf) trained,
predictions made on test set

The code evaluates Decision Tree accuracy, comparing predicted to actual values using test set, prints
accuracy, then trains model on full dataset.

Decision Tree Accuracy on Test Set: 53.53%

The code employs a trained model (clf) to predict outcomes (all_predictions) for all data rows (X_encoded),
filling the 'P_Winner' column in the original DataFrame (df) with these results.

The code saves the DataFrame (df) as a new CSV file named 'output.csv', excluding the index.

This gives us a 53.5% accuracy.

features = ['B_Stance', 'R_Stance', 'B_age', 'R_age', 'B_Reach_cms',
 'R_Reach_cms', 'B_total_rounds_fought',
 'R_total_rounds_fought']
target = 'A_Winner'

X = df[features]
y = df[target]

Convert categorical variables to numerical using one-hot encoding
#for the entire dataset
X_encoded = pd.get_dummies(X)

In [45]: # Separate rows where 'P_Winner' is blank and where it's not
blank_winner_rows = df[df['P_Winner'] == '']
non_blank_winner_rows = df[df['P_Winner'] != '']

Train-test split for computing accuracy
X_train, X_test, y_train, y_test = train_test_split(X_encoded,
 y, test_size=0.2, random_state=42)
Train the model on the training set
clf.fit(X_train, y_train)

Make predictions for the test set
predictions = clf.predict(X_test)

In [46]: # Compute accuracy on the test set
accuracy = accuracy_score(y_test, predictions)
print(f"Decision Tree Accuracy on Test Set: {accuracy * 100:.2f}%")

Train the model on the entire dataset
clf.fit(X_encoded, y)

Out[46]:

In [47]: # Make predictions for all rows
if not X_encoded.empty:
 all_predictions = clf.predict(X_encoded)

 # Populate 'P_Winner' column with predictions for all rows
 df.loc[X_encoded.index, 'P_Winner'] = all_predictions

In [48]: # Save the DataFrame to a new CSV file
df.to_csv('output.csv', index=False)

▾ DecisionTreeClassifier

DecisionTreeClassifier(random_state=42)

The percentage achieved, while strong in combat sport aspects, falls slightly short of the paper's 61.77%
accuracy with extensive model training. I think i can do better.

Solution Improvement 3

Random Forest 3.1
I decided to use Random Forest as a comparison to my decision tree due to though research I found out
that these two models have comparable attributes that tend to complement similar data sets.

This code selects columns for features (X) and target (y) from DataFrame, using one-hot encoding to convert
categorical variables in X.

This code performs a train-test split on the features (X) and target variable (y). It splits the dataset into
training and testing sets with a test size of 20%. Additionally, it initializes a Random Forest Classifier
(rf_classifier) with 100 estimators and a random state of 42.

Train RandomForestClassifier (rf_classifier) on (X_train, y_train), predict (y_pred) using (X_test) for evaluation.

Compare predicted (y_pred) to actual (y_test), calculating accuracy, printing Random Forest Classifier
accuracy on test set.

Random Forest Accuracy on Test Set: 58.9%

In [49]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

In [50]: # X contains the features, and y contains the target variable
X = df[['B_Stance', 'B_age', 'B_Reach_cms', 'R_Stance', 'R_age',
 'R_Reach_cms', 'B_total_rounds_fought', 'R_total_rounds_fought']]
y = df['A_Winner']

Convert categorical variables to numerical using one-hot encoding
X = pd.get_dummies(X)

In [51]: # Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.2, random_state=42)

Initialize the RandomForestClassifier
rf_classifier = RandomForestClassifier(n_estimators=100,
 random_state=42)

In [52]: # Fit the model on the training data
rf_classifier.fit(X_train, y_train)

Predict on the test data
y_pred = rf_classifier.predict(X_test)

In [53]: # Evaluate the accuracy
accuracy = accuracy_score(y_test, y_pred)
print("")
print("Random Forest Accuracy on Test Set:",
 f"{round(accuracy * 100, 1)}%")

Conclusion 4
This gives us a 58.9% accuracy.

This is a significant improvement (5.4%) given the circumstances. First of all, on a general note, combat
sports are notoriously known for truly anything being possible, David on many of time beats goliath.
however, on a more relevant note if you compare my results to the paper, they got 61.77%, which like I
mentioned before I’m not too far off the result that they got. which given the data they had available to
them and the depth and models that they used; I can firmly say that my model can hold its own.

