
Big Data

Predicting The Outcome of MMA Fights

Research 1

Overview 1.1
The data set which I got from, https://www.kaggle.com/datasets/rajeevw/ufcdata (11/10/2023, 10:45)
includes every main card UFC bout from 1993 to 2021. Some of the data includes the fighters weight,
height, reach, age, fighters stance, who won and various other statistics within the fight.

I chose this dataset as I have an interest in the sport of mixed martial arts, and I wanted to know how
accurately I could predict the outcome of the fights by using supervised machine learning.

Objectives 1.2
With this data set I want to identify patterns within the fights that i could use to predict which fighter would
win. This will be based off the fighter's stance and further variables within the fight, for example; height,
reach etc.

Peer Reviewed Paper 1.3
The article starts by providing a comprehensive overview of mixed martial arts (MMA), tracing its historical
evolution and its current landscape. It details the structure of MMA contests, covering regulations, weight
classes, and judging criteria while drawing comparisons and contrasts with boxing.

Addressing the complexity of predicting MMA fights, the article acknowledges the unpredictability of
combat sports, citing the ubiquitous nature of unforeseen events often encapsulated by the phrase 'A
Puncher's Chance.' It meticulously outlines the data acquisition process and subsequent modifications,
emphasizing the intricate estimation of individual fighter skills. This estimation encompasses various aspects,
striking abilities, takedown proficiency, submission accuracy, knockout probabilities, and control times per
takedown.

Central to the article is the introduction of the Markov chain model, a sophisticated analytical approach
integrating diverse fighter skill data to refine the accuracy of predicting fight outcomes. This model
incorporates four key dynamics: Standing States, Ground States, Model Complexity, and Simulation,
meticulously simulating potential fight scenarios based on fighter strategies, position effectiveness, action
rates, and fight durations.

Furthermore, the article details the modelling of judges' decisions using logistic regression and ordered
probit regression models. It compares these models with benchmark approaches like Bradley–Terry and
logistic regression, emphasizing their respective strengths and limitations in predicting fight outcomes.

https://www.kaggle.com/datasets/rajeevw/ufcdata


Leveraging MMA fight data spanning from 2001 to 2018, the study achieves a commendable 61.77%
accuracy in forecasting fight results, showcasing the efficacy of the proposed predictive model. However, the
article underscores the continuous need for improvement, advocating for more granular data, diverse
methodological approaches, and adaptability to dynamic trends for heightened predictive precision.

In essence, the article presents an advanced framework for anticipating MMA fight outcomes by
amalgamating fighter skill estimations with empirical fight data. Despite notable success, it underscores the
persistent pursuit of refinement and advancement for enhanced predictive accuracy and applicability.

Link: https://www.sciencedirect.com/science/article/pii/S0169207022000073?via%3Dihub#section-cited-by

Code 2

Imports 2.1

Here we are simply connecting to the .csv file giving it the variable name; df, for ease of calling.

Preparing the Data 2.2
Before analyzing, it's crucial to review and comprehend the .csv file's data by assessing columns and data
types.

The dataset contains 1203 rows, and 144 columns 
<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 1203 entries, 0 to 1202 

In [1]: #import necessary libraries 
import os 
import numpy as np 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
import plotly.express as px 
import plotly.io as pio 
pio.renderers.default = 'notebook' 

In [2]: df = pd.read_csv('data.csv') 

In [3]: #Preparing/Checking Data 
#=================================== 
 
# data size 
print(f'The dataset contains {df.shape[0]} rows, and {df.shape[1]} columns') 
 
# Always good to check the names of the columns 
df.columns 
 
# and check the data types 
df.info() 
 
# for every column 
for i in df.columns: 
    # print how many features it has 
    print(i,len(df[i].unique())) 
 
df.describe() 

https://www.sciencedirect.com/science/article/pii/S0169207022000073?via%3Dihub#section-cited-by


Columns: 144 entries, R_fighter to R_age 
dtypes: bool(1), float64(102), int64(33), object(8) 
memory usage: 1.3+ MB 
R_fighter 536 
B_fighter 632 
Referee 114 
date 477 
location 150 
Winner 2 
title_bout 2 
weight_class 13 
B_avg_KD 244 
B_avg_opp_KD 158 
B_avg_SIG_STR_pct 735 
B_avg_opp_SIG_STR_pct 736 
B_avg_TD_pct 616 
B_avg_opp_TD_pct 614 
B_avg_SUB_ATT 305 
B_avg_opp_SUB_ATT 275 
B_avg_REV 163 
B_avg_opp_REV 159 
B_avg_SIG_STR_att 917 
B_avg_SIG_STR_landed 787 
B_avg_opp_SIG_STR_att 934 
B_avg_opp_SIG_STR_landed 771 
B_avg_TOTAL_STR_att 944 
B_avg_TOTAL_STR_landed 849 
B_avg_opp_TOTAL_STR_att 959 
B_avg_opp_TOTAL_STR_landed 828 
B_avg_TD_att 490 
B_avg_TD_landed 400 
B_avg_opp_TD_att 478 
B_avg_opp_TD_landed 390 
B_avg_HEAD_att 908 
B_avg_HEAD_landed 712 
B_avg_opp_HEAD_att 894 
B_avg_opp_HEAD_landed 729 
B_avg_BODY_att 623 
B_avg_BODY_landed 588 
B_avg_opp_BODY_att 627 
B_avg_opp_BODY_landed 573 
B_avg_LEG_att 574 
B_avg_LEG_landed 555 
B_avg_opp_LEG_att 588 
B_avg_opp_LEG_landed 552 
B_avg_DISTANCE_att 905 
B_avg_DISTANCE_landed 746 
B_avg_opp_DISTANCE_att 895 
B_avg_opp_DISTANCE_landed 753 
B_avg_CLINCH_att 615 
B_avg_CLINCH_landed 558 
B_avg_opp_CLINCH_att 595 
B_avg_opp_CLINCH_landed 558 
B_avg_GROUND_att 636 
B_avg_GROUND_landed 569 
B_avg_opp_GROUND_att 592 
B_avg_opp_GROUND_landed 520 
B_avg_CTRL_time(seconds) 1013 
B_avg_opp_CTRL_time(seconds) 1022 
B_total_time_fought(seconds) 991 
B_total_rounds_fought 67 
B_total_title_bouts 12 
B_current_win_streak 11 
B_current_lose_streak 6 
B_longest_win_streak 11 
B_wins 21 



B_losses 14 
B_draw 1 
B_win_by_Decision_Majority 3 
B_win_by_Decision_Split 6 
B_win_by_Decision_Unanimous 11 
B_win_by_KO/TKO 12 
B_win_by_Submission 11 
B_win_by_TKO_Doctor_Stoppage 3 
B_Stance 2 
B_Height_cms 21 
B_Reach_cms 24 
B_Weight_lbs 23 
R_avg_KD 374 
R_avg_opp_KD 227 
R_avg_SIG_STR_pct 898 
R_avg_opp_SIG_STR_pct 879 
R_avg_TD_pct 787 
R_avg_opp_TD_pct 776 
R_avg_SUB_ATT 444 
R_avg_opp_SUB_ATT 390 
R_avg_REV 215 
R_avg_opp_REV 229 
R_avg_SIG_STR_att 1036 
R_avg_SIG_STR_landed 955 
R_avg_opp_SIG_STR_att 1045 
R_avg_opp_SIG_STR_landed 919 
R_avg_TOTAL_STR_att 1041 
R_avg_TOTAL_STR_landed 976 
R_avg_opp_TOTAL_STR_att 1069 
R_avg_opp_TOTAL_STR_landed 977 
R_avg_TD_att 669 
R_avg_TD_landed 580 
R_avg_opp_TD_att 672 
R_avg_opp_TD_landed 549 
R_avg_HEAD_att 1021 
R_avg_HEAD_landed 877 
R_avg_opp_HEAD_att 1013 
R_avg_opp_HEAD_landed 885 
R_avg_BODY_att 805 
R_avg_BODY_landed 771 
R_avg_opp_BODY_att 799 
R_avg_opp_BODY_landed 745 
R_avg_LEG_att 778 
R_avg_LEG_landed 740 
R_avg_opp_LEG_att 768 
R_avg_opp_LEG_landed 753 
R_avg_DISTANCE_att 1026 
R_avg_DISTANCE_landed 916 
R_avg_opp_DISTANCE_att 1024 
R_avg_opp_DISTANCE_landed 897 
R_avg_CLINCH_att 796 
R_avg_CLINCH_landed 750 
R_avg_opp_CLINCH_att 773 
R_avg_opp_CLINCH_landed 737 
R_avg_GROUND_att 828 
R_avg_GROUND_landed 750 
R_avg_opp_GROUND_att 743 
R_avg_opp_GROUND_landed 682 
R_avg_CTRL_time(seconds) 1094 
R_avg_opp_CTRL_time(seconds) 1105 
R_total_time_fought(seconds) 1082 
R_total_rounds_fought 75 
R_total_title_bouts 15 
R_current_win_streak 14 
R_current_lose_streak 5 
R_longest_win_streak 16 



A new column, "A_Winner," is added to the DataFrame to clarify fight outcomes. This enhances comparison
ease. Saving the DataFrame to a new CSV file boosts model usability/reusability. This separation enables
additional data incorporation without altering result files, ensuring a more organized and presentable
dataset

The current dataset will undergo deeper cleaning later despite minimal changes. To enhance model
reusability, a separate .csv file for results will be created. This allows for adding new fights and introducing
additional data into the model for future expansion.

R_wins 23 
R_losses 15 
R_draw 1 
R_win_by_Decision_Majority 3 
R_win_by_Decision_Split 6 
R_win_by_Decision_Unanimous 11 
R_win_by_KO/TKO 12 
R_win_by_Submission 13 
R_win_by_TKO_Doctor_Stoppage 3 
R_Stance 2 
R_Height_cms 21 
R_Reach_cms 24 
R_Weight_lbs 25 
B_age 27 
R_age 26 

Winner B_avg_KD B_avg_opp_KD B_avg_SIG_STR_pct B_avg_opp_SIG_STR_pct B_avg_TD_pct B_avg_

count 1203.000000 1203.000000 1203.000000 1203.000000 1203.000000 1203.000000

mean 0.640898 0.263192 0.173225 0.454541 0.425203 0.297864

std 0.479937 0.385142 0.312796 0.123221 0.125891 0.262875

min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

25% 0.000000 0.000000 0.000000 0.379388 0.345781 0.062500

50% 1.000000 0.062500 0.000000 0.451875 0.417109 0.250000

75% 1.000000 0.500000 0.250000 0.525000 0.497935 0.500000

max 1.000000 5.000000 2.000000 1.000000 1.000000 1.000000

8 rows × 135 columns

Out[3]:

In [4]: df['A_Winner'] = ''  # Initialize the column with empty strings 
 
#Makes the actual results clearer/easier to understand 
for index, row in df.iterrows(): 
 
    if row['Winner'] == 1: 
        df.at[index, 'A_Winner'] = row['R_Stance'] 
 
    elif row['Winner'] == 0: 
        df.at[index, 'A_Winner'] = row['B_Stance'] 
     
    else: 
        #Making sure that the data is correct and the previous  
        #function worked 
        df.at[index, 'A_Winner'] = "Error" 
 
# Save the DataFrame to a new CSV file 
df.to_csv('output.csv', index=False) 



Exploring the Data 2.3

Age Graph

This graph compares how both stances fair before and after they turn 30

Columns with numerical data are isolated. Percentiles [0.1, 0.25, 0.5, 0.75] are computed. Winners in the
dataset are counted to explore age-related correlations for visualization prep.

Winner 
1    771 
0    432 
Name: count, dtype: int64

Code styles graph with dark grid theme using Set2 colors, duplicates dataset for better visualization,
enhancing appeal and interpretation..

The 'stances' function categorizes fighter stances. If Red (R_Stance) or Blue (B_Stance) is Orthodox and wins,
it's labeled Orthodox; otherwise, it's Southpaw.

The function 'changeW' categorizes fighters in the Red and Blue corners as 'Over 30' if either R_age or B_age
is 30 or older; otherwise, it labels them 'Under 30'.

This updates the Winner column in the dataframe. It applies a function to each value in the Winner column.
If the value is Orthodox, it remains unchanged. Otherwise, it's set to Southpaw.

In [5]: #Graph for age 
numeric_columns = df.select_dtypes(include=[np.number])  
# Select only numeric columns 
quantiles = numeric_columns.quantile([0.1, 0.25, 0.5, 0.75], axis=0) 
df['Winner'].value_counts() 

Out[5]:

In [6]: sns.set_style('darkgrid') 
sns.set_palette('Set2') 
# first we make a copy of the dataset to decode the variables  
#(for visualisation␣purposes) 
dfC = df.copy() 

In [7]: # Function to determine stances 
def stances(row): 
    if (row["R_Stance"] == 'Orthodox' and row['Winner'] == 1 or  
        row["B_Stance"] == 'Orthodox' and row['Winner'] == 0): 
        return 'Orthodox' 
    else: 
        return 'Southpaw' 

In [8]: # Function to determine the age condition 
def changeW(row): 
    if (row['R_age'] >= 30) or (row['B_age'] >= 30): 
        return 'Over 30' 
    else: 
        return 'Under 30' 

In [9]: # Update the 'Winner' column based on the 'Orthodox' condition 
df['Winner'] = df['Winner'].apply(lambda x: 'Orthodox' if x ==  
                                  "Orthodox" else 'Southpaw') 



The code updates dataframe columns B_Stance and R_Stance based on Winner. If Winner is Orthodox, it
applies stances function; otherwise, keeps original stance.

The code uses changeW to update 'Winner' based on fighters' ages (>30 as 'Over 30', <=30 as 'Under 30')
row by row in the dataframe.

This code creates a copy of the existing DataFrame df and stores it as dfC. This copy enables independent
manipulation and analysis without altering the original dataset.

The code plots count data from 'dfC' with specified figure size, showing 'R_Stance' counts colored by
'Winner', titled 'Southpaw vs Orthodox'.

In [10]: # Update the 'B_Stance' and 'R_Stance' columns based on the  
#'Winner' condition 
df['B_Stance'] = df.apply(lambda row: stances(row['B_Stance']) if  
                          row['Winner'] == 'Orthodox' else  
                          row['B_Stance'], axis=1) 
df['R_Stance'] = df.apply(lambda row: stances(row['R_Stance']) if  
                          row['Winner'] == 'Orthodox' else  
                          row['R_Stance'], axis=1) 

In [11]: # Apply the 'changeW' function to update the 'Winner'  
#column based on age condition 
df['Winner'] = df.apply(changeW, axis=1) 

In [12]: # Create a copy of the DataFrame 
dfC = df.copy() 

In [13]: # Plot the data 
sns.set(rc={'figure.figsize':(9,7)}) 
sns.countplot(data=dfC, x='R_Stance', hue='Winner') 
plt.title('Southpaw vs Orthodox\n') 
plt.show() 



This graph tell us a few things:

1. That when both the southpaw and orthodox fighters are over the age of 30, the southpaw fighter
seems to just take the edge

2. when both the southpaw and orthodox fighters are under the age of 30, the southpaw fighter seem to
have a quite sizable advantage

Reach Graph

This graph compares how both stances fair when they have the dis/advantage in Reach

Numeric columns are isolated from a dataframe, their quantiles are computed, and Winner counts are
gathered from the dataframe.

Winner 
Over 30     906 
Under 30    297 
Name: count, dtype: int64

In [14]: #graph for reach 
# Select only numeric columns 
numeric_columns = df.select_dtypes(include=[np.number])   
quantiles = numeric_columns.quantile([0.1, 0.25, 0.5, 0.75], axis=0) 
df['Winner'].value_counts() 

Out[14]:



Matplotlib's style is set to darkgrid while the colour palette is adjusted to Set2. The dataset is copied for
variable decoding.

The function stances categorizes based on fighter stances, returning Orthodox if certain conditions are met,
else Southpaw.

The changeW function assesses reach comparisons between fighters, labelling either Reach Advantage or
Reach Disadvantage based on the condition.

The Winner column is updated using a lambda function; if Orthodox, it remains unchanged, otherwise, it's
set to Southpaw.

Update Winner using changeW by age conditions; duplicate DataFrame df as dfC for storage and
manipulation.

Matplotlib plot with (9,7) size shows count of R_Stance in dfC data, comparing with 'Winner'. Title: Southpaw
vs Orthodox. Displayed plot.

In [15]: sns.set_style('darkgrid') 
sns.set_palette('Set2') 
# first we make a copy of the dataset to decode the variables 
dfC = df.copy() 

In [16]: # Function to determine stances 
def stances(row): 
    if (row["R_Stance"] == 'Orthodox' and row['Winner'] == 1 or  
        row["B_Stance"] == 'Orthodox' and row['Winner'] == 0): 
        return 'Orthodox' 
    else: 
        return 'Southpaw' 

In [17]: # Function to determine the age condition 
def changeW(row): 
    if (row['R_Reach_cms'] >= row['B_Reach_cms']): 
        return 'Reach Advantage' 
    else: 
        return 'Reach Disadvantage' 

In [18]: # Update the 'Winner' column based on the 'Orthodox' condition 
df['Winner'] = df['Winner'].apply(lambda x: 'Orthodox' if x ==  
                                  "Orthodox" else 'Southpaw') 

In [19]: # Update the 'B_Stance' and 'R_Stance' columns based on the  
#'Winner' condition 
df['B_Stance'] = df.apply(lambda row: stances(row['B_Stance']) if  
                          row['Winner'] == 'Orthodox' else  
                          row['B_Stance'], axis=1) 
df['R_Stance'] = df.apply(lambda row: stances(row['R_Stance']) if  
                          row['Winner'] == 'Orthodox' else  
                          row['R_Stance'], axis=1) 

In [20]: # Apply the 'changeW' function to update the 'Winner' column  
#based on age condition 
df['Winner'] = df.apply(changeW, axis=1) 
 
# Create a copy of the DataFrame 
dfC = df.copy() 



This graph tell us a few things:

1. That when both the fighters have the reach advantage, although close the orthodox fighter just edges it
2. When both the fighters have the reach disadvantage, the southpaw has a significant advantage

Height Graph

This graph compares how both stances fair when they have the dis/advantage in Height

First isolates numeric columns, compute their quantiles, and counts Winner values for height related
graphing purposes.

Winner 

In [21]: # Plot the data 
sns.set(rc={'figure.figsize':(9,7)}) 
sns.countplot(data=dfC, x='R_Stance', hue='Winner') 
plt.title('Southpaw vs Orthodox\n') 
plt.show() 

In [22]: #graph for height 
numeric_columns = df.select_dtypes(include=[np.number])   
# Select only numeric columns 
quantiles = numeric_columns.quantile([0.1, 0.25, 0.5, 0.75], axis=0) 
df['Winner'].value_counts() 

Out[22]:



Reach Advantage       696 
Reach Disadvantage    507 
Name: count, dtype: int64

Seaborn configures darkgrid style, Set2 palette for plots; 'df' copied for variable decoding in visualizations.

Function categorizes stances, Orthodox if conditions (R_Stance, B_Stance, Winner) met, else labels as
Southpaw based on outcomes.

The function changeW assesses height, assigning Height Advantage if Red corner is taller than Blue; else,
Height Disadvantage.

Winner column update,:iIf value is Orthodox, unchanged; else set to Southpaw.

Update dataframe's B_Stance and R_Stance using Winner condition. Apply stances function for Orthodox
winner; keep original values otherwise.

Code updates'Winne' column in dataframe using'change' function, comparing Red and Blue corner heights
for advantages/disadvantages.

DataFrame dfC created as an independent copy of df for separate analysis and manipulation, preserving

In [23]: sns.set_style('darkgrid') 
sns.set_palette('Set2') 
# first we make a copy of the dataset to decode the variables  
#(for visualisation␣purposes) 
dfC = df.copy() 

In [24]: # Function to determine stances 
def stances(row): 
    if (row["R_Stance"] == 'Orthodox' and row['Winner'] == 1 or  
        row["B_Stance"] == 'Orthodox' and row['Winner'] == 0): 
        return 'Orthodox' 
    else: 
        return 'Southpaw' 

In [25]: # Function to determine the age condition 
def changeW(row): 
    if (row['R_Height_cms'] >= row['B_Height_cms']): 
        return 'Height Advantage' 
    else: 
        return 'Height Disadvantage' 

In [26]: # Update the 'Winner' column based on the 'Orthodox' condition 
df['Winner'] = df['Winner'].apply(lambda x: 'Orthodox' if x ==  
                                  "Orthodox" else 'Southpaw') 

In [27]: # Update the 'B_Stance' and 'R_Stance' columns based on the 'Winner'  
#condition 
df['B_Stance'] = df.apply(lambda row: stances(row['B_Stance']) if  
                          row['Winner'] == 'Orthodox' else  
                          row['B_Stance'], axis=1) 
df['R_Stance'] = df.apply(lambda row: stances(row['R_Stance']) if  
                          row['Winner'] == 'Orthodox' else  
                          row['R_Stance'], axis=1) 

In [28]: # Apply the 'changeW' function to update the 'Winner' column  
#based on age condition 
df['Winner'] = df.apply(changeW, axis=1) 



original dataset integrity.

A Seaborn code segment plots a count based on categories in DataFrame dfC (R_Stance), using 'Winner' for
color, with 9x7 figure, titled "Southpaw vs Orthodox," displaying the plot.

This graph tell us a few things:

1. That when both the fighters have the Height advantage, although close the southpaw fighter edges it
2. When both the fighters have the reach disadvantage, the southpaw has a significant advantage

Experience Graph

This graph compares how both stances fair when they have the dis/advantage in Ring Experience

Isolate numeric columns, calculate [0.1, 0.25, 0.5, 0.75] percentiles, and count "Winner" values, likely for

In [29]: # Create a copy of the DataFrame 
dfC = df.copy() 

In [30]: # Plot the data 
sns.set(rc={'figure.figsize':(9,7)}) 
sns.countplot(data=dfC, x='R_Stance', hue='Winner') 
plt.title('Southpaw vs Orthodox\n') 
plt.show() 



visualizing experiences.

Winner 
Height Advantage       686 
Height Disadvantage    517 
Name: count, dtype: int64

ConfiguringsSeabor,: plotting style to darkgrid, color palette Set2. Dataset copied as dfC for variable
decoding in visualization.

The'stance' function sorts stances by R_Stance, B_Stance, and Winner criteria, yielding Orthodox or
Southpaw based on conditions.

The"change" function compares Red and Blue fighters' rounds, labeling Red with more or equal rounds as
'More Round Experience.'

DataFrame's Winner column updated: If value is Orthodox, unchanged; else, set to Southpaw.

Winner column updates B_Stance and R_Stance in the DataFrame based on it; if Winner is Orthodox, stances
function modifies values..

In [31]: #graph for Experience 
 
numeric_columns = df.select_dtypes(include=[np.number])   
# Select only numeric columns 
quantiles = numeric_columns.quantile([0.1, 0.25, 0.5, 0.75], axis=0) 
df['Winner'].value_counts() 

Out[31]:

In [32]: sns.set_style('darkgrid') 
sns.set_palette('Set2') 
# first we make a copy of the dataset to decode the variables  
#(for visualisation␣purposes) 
dfC = df.copy() 

In [33]: # Function to determine stances 
def stances(row): 
    if (row["R_Stance"] == 'Orthodox' and row['Winner'] == 1 or  
        row["B_Stance"] == 'Orthodox' and row['Winner'] == 0): 
        return 'Orthodox' 
    else: 
        return 'Southpaw' 

In [34]: # Function to determine the age condition 
def changeW(row): 
    if (row['R_total_rounds_fought'] >= row['B_total_rounds_fought']): 
        return 'More Round Experience' 
    else: 
        return 'Less Round Experience' 

In [35]: # Update the 'Winner' column based on the 'Orthodox' condition 
df['Winner'] = df['Winner'].apply(lambda x: 'Orthodox' if x ==  
                                  "Orthodox" else 'Southpaw') 

In [36]: # Update the 'B_Stance' and 'R_Stance' columns based on the 'Winner'  
#condition 
df['B_Stance'] = df.apply(lambda row: stances(row['B_Stance']) if  
                          row['Winner'] == 'Orthodox' else  
                          row['B_Stance'], axis=1) 
df['R_Stance'] = df.apply(lambda row: stances(row['R_Stance']) if  



The line employs 'changeW' function to update DataFrame's 'Winner' column. It iterates rows, setting
'Winner' based on Red fighter's round experience against Blue.

DataFrame df duplicated as dfC retains identical data, enabling separate analysis without altering the initial
dataset.

A count plot from DataFrame dfC: organizes R_Stance counts, colors by Winner, sized (9,7), titled "Southpaw
vs Orthodox," displayed.

                          row['Winner'] == 'Orthodox' else  
                          row['R_Stance'], axis=1) 

In [37]: # Apply the 'changeW' function to update the 'Winner' column  
#based on age condition 
df['Winner'] = df.apply(changeW, axis=1) 

In [38]: # Create a copy of the DataFrame 
dfC = df.copy() 

In [39]: # Plot the data 
sns.set(rc={'figure.figsize':(9,7)}) 
sns.countplot(data=dfC, x='R_Stance', hue='Winner') 
plt.title('Southpaw vs Orthodox\n') 
plt.show() 



This graph tell us a few things:

1. That when the fighters have the experience advantage, the southpaw fighter has a serious advantage
2. When the fighters have the experience disadvantage, the orthodox has a significant advantage

This implies perfecting the southpaw stance takes longer than the orthodox one, but over time, it improves
performance significantly, indicating its potential superiority.

Decision Tree 2.4
This will take all of the relevant comparisons and disparities between the two fighters that were highlighted
with the graphs and uses them to determine the outcome of the fight. The % accuracy is then displayed at
the end.

First we must create the P_Winner column in our .csv file, this will for now be populated with empty strings,
but will be populated with the decision trees predicted winner though the process.

To enhance clarity, dropping numerous irrelevant columns from the messy dataset is crucial despite initial
confusion, significantly improving the dataset's relevance.

In [40]: # Initialize the column with empty strings 
df['P_Winner'] = ''   

In [41]: from sklearn.tree import DecisionTreeClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
import pandas as pd 

In [42]: # Cleaning data set 
columns_to_drop = [ 
    'B_avg_KD', 'B_avg_opp_KD', 'B_avg_opp_SIG_STR_pct', 
    'B_avg_SIG_STR_pct', 'B_avg_TD_pct', 'B_avg_opp_TD_pct', 
    'B_avg_SUB_ATT', 'B_avg_opp_SUB_ATT', 'B_avg_REV',  
    'B_avg_opp_REV', 'B_avg_SIG_STR_att', 'B_avg_SIG_STR_landed', 
    'B_avg_opp_SIG_STR_att', 'B_avg_opp_SIG_STR_landed',  
    'B_avg_TOTAL_STR_att', 'B_avg_TOTAL_STR_landed', 
    'B_avg_opp_TOTAL_STR_att', 'B_avg_opp_TOTAL_STR_landed',  
    'B_avg_TD_att', 'B_avg_TD_landed', 'B_avg_opp_TD_att', 
    'B_avg_opp_TD_landed', 'B_avg_HEAD_att', 'B_avg_HEAD_landed',  
    'B_avg_opp_HEAD_att', 'B_avg_opp_HEAD_landed', 
    'B_avg_BODY_att', 'B_avg_BODY_landed', 'B_avg_opp_BODY_att',  
    'B_avg_opp_BODY_landed', 'B_avg_LEG_att', 
    'B_avg_LEG_landed', 'B_avg_opp_LEG_att', 'B_avg_opp_LEG_landed',  
    'B_avg_DISTANCE_att', 'B_avg_DISTANCE_landed', 
    'B_avg_opp_DISTANCE_att', 'B_avg_opp_DISTANCE_landed',  
    'B_avg_CLINCH_att', 'B_avg_CLINCH_landed','B_avg_opp_CLINCH_att',  
    'B_avg_opp_CLINCH_landed', 'B_avg_GROUND_att',  
    'B_avg_GROUND_landed','B_avg_opp_GROUND_att',  
    'B_avg_opp_GROUND_landed', 'B_avg_CTRL_time(seconds)',  
    'B_avg_opp_CTRL_time(seconds)','B_total_time_fought(seconds)',  
    'B_total_title_bouts', 'B_current_win_streak',  
    'B_current_lose_streak','B_longest_win_streak', 'B_wins',  
    'B_losses', 'B_draw', 'B_win_by_Decision_Majority',  
    'B_win_by_Decision_Split','B_win_by_Decision_Unanimous',  
    'B_win_by_KO/TKO', 'B_win_by_Submission',  
    'B_win_by_TKO_Doctor_Stoppage','R_avg_KD',  
    'R_avg_opp_KD', 'R_avg_SIG_STR_pct', 'R_avg_opp_SIG_STR_pct',  
    'R_avg_TD_pct', 'R_avg_opp_TD_pct','R_avg_SUB_ATT',  



The code cleans a DataFrame (df) by removing leading/trailing whitespaces from column names, dropping
specified columns, and removing rows with missing values.

This code initializes Decision Tree Classifier, defines features/target (df), selects columns, assigns to X/y,
performs one-hot encoding for X_encoded.

B_total_rounds_fought B_Height_cms B_Reach_cms B_Weight_lbs R_total_rounds_fought R_Height_cms R_

count 1203.000000 1203.000000 1203.000000 1203.000000 1203.000000 1203.000000 1

mean 13.638404 179.187182 183.823791 168.347465 18.943475 179.020382

std 12.795060 7.616544 9.117838 30.300749 15.567206 8.148383

min 1.000000 152.400000 152.400000 115.000000 1.000000 152.400000

25% 5.000000 175.260000 177.800000 155.000000 7.000000 172.720000

50% 9.000000 180.340000 185.420000 170.000000 15.000000 180.340000

75% 18.000000 185.420000 190.500000 185.000000 27.000000 185.420000

max 86.000000 203.200000 213.360000 265.000000 85.000000 210.820000

    'R_avg_opp_SUB_ATT', 'R_avg_REV', 'R_avg_opp_REV',  
    'R_avg_SIG_STR_att', 'R_avg_SIG_STR_landed', 
    'R_avg_opp_SIG_STR_att', 'R_avg_opp_SIG_STR_landed',  
    'R_avg_TOTAL_STR_att', 'R_avg_TOTAL_STR_landed', 
    'R_avg_opp_TOTAL_STR_att', 'R_avg_opp_TOTAL_STR_landed',  
    'R_avg_TD_att', 'R_avg_TD_landed', 'R_avg_opp_TD_att', 
    'R_avg_opp_TD_landed', 'R_avg_HEAD_att', 'R_avg_HEAD_landed',  
    'R_avg_opp_HEAD_att', 'R_avg_opp_HEAD_landed', 
    'R_avg_BODY_att', 'R_avg_BODY_landed', 'R_avg_opp_BODY_att',  
    'R_avg_opp_BODY_landed', 'R_avg_LEG_att', 
    'R_avg_LEG_landed', 'R_avg_opp_LEG_att', 'R_avg_opp_LEG_landed',  
    'R_avg_DISTANCE_att', 'R_avg_DISTANCE_landed', 
    'R_avg_opp_DISTANCE_att', 'R_avg_opp_DISTANCE_landed',  
    'R_avg_CLINCH_att', 'R_avg_CLINCH_landed', 
    'R_avg_opp_CLINCH_att', 'R_avg_opp_CLINCH_landed',  
    'R_avg_GROUND_att', 'R_avg_GROUND_landed','R_avg_opp_GROUND_att',  
    'R_avg_opp_GROUND_landed', 'R_avg_CTRL_time(seconds)',  
    'R_avg_opp_CTRL_time(seconds)','R_total_time_fought(seconds)',  
    'R_total_title_bouts', 'R_current_win_streak',  
    'R_current_lose_streak','R_longest_win_streak', 'R_wins',  
    'R_losses', 'R_draw', 'R_win_by_Decision_Majority',  
    'R_win_by_Decision_Split','R_win_by_Decision_Unanimous',  
    'R_win_by_KO/TKO', 'R_win_by_Submission',  
    'R_win_by_TKO_Doctor_Stoppage', 'Referee' 
] 

In [43]: # Remove leading/trailing whitespaces from column names 
df.columns = df.columns.str.strip() 
 
# Drop columns 
df = df.drop(columns_to_drop, axis=1) 
 
# Drop rows with missing values 
df = df.dropna() 
df.describe() 

Out[43]:

In [44]: # Initialize the Decision Tree Classifier 
clf = DecisionTreeClassifier(random_state=42) 
 
# Define features and target variable 



DataFrame df split based on 'P_Winner'. X_encoded, y used for train-test split. Model (clf) trained,
predictions made on test set

The code evaluates Decision Tree accuracy, comparing predicted to actual values using test set, prints
accuracy, then trains model on full dataset.

Decision Tree Accuracy on Test Set: 53.53% 

The code employs a trained model (clf) to predict outcomes (all_predictions) for all data rows (X_encoded),
filling the 'P_Winner' column in the original DataFrame (df) with these results.

The code saves the DataFrame (df) as a new CSV file named 'output.csv', excluding the index.

This gives us a 53.5% accuracy.

features = ['B_Stance', 'R_Stance', 'B_age', 'R_age', 'B_Reach_cms',  
            'R_Reach_cms', 'B_total_rounds_fought',  
            'R_total_rounds_fought'] 
target = 'A_Winner' 
 
X = df[features] 
y = df[target] 
 
# Convert categorical variables to numerical using one-hot encoding  
#for the entire dataset 
X_encoded = pd.get_dummies(X) 

In [45]: # Separate rows where 'P_Winner' is blank and where it's not 
blank_winner_rows = df[df['P_Winner'] == ''] 
non_blank_winner_rows = df[df['P_Winner'] != ''] 
 
# Train-test split for computing accuracy 
X_train, X_test, y_train, y_test = train_test_split(X_encoded,                           
                                y, test_size=0.2, random_state=42) 
# Train the model on the training set 
clf.fit(X_train, y_train) 
 
# Make predictions for the test set 
predictions = clf.predict(X_test) 

In [46]: # Compute accuracy on the test set 
accuracy = accuracy_score(y_test, predictions) 
print(f"Decision Tree Accuracy on Test Set: {accuracy * 100:.2f}%") 
 
# Train the model on the entire dataset 
clf.fit(X_encoded, y) 

Out[46]:

In [47]: # Make predictions for all rows 
if not X_encoded.empty: 
    all_predictions = clf.predict(X_encoded) 
 
    # Populate 'P_Winner' column with predictions for all rows 
    df.loc[X_encoded.index, 'P_Winner'] = all_predictions 

In [48]: # Save the DataFrame to a new CSV file 
df.to_csv('output.csv', index=False) 

▾ DecisionTreeClassifier

DecisionTreeClassifier(random_state=42)



The percentage achieved, while strong in combat sport aspects, falls slightly short of the paper's 61.77%
accuracy with extensive model training. I think i can do better.

Solution Improvement 3

Random Forest 3.1
I decided to use Random Forest as a comparison to my decision tree due to though research I found out
that these two models have comparable attributes that tend to complement similar data sets.

This code selects columns for features (X) and target (y) from DataFrame, using one-hot encoding to convert
categorical variables in X.

This code performs a train-test split on the features (X) and target variable (y). It splits the dataset into
training and testing sets with a test size of 20%. Additionally, it initializes a Random Forest Classifier
(rf_classifier) with 100 estimators and a random state of 42.

Train RandomForestClassifier (rf_classifier) on (X_train, y_train), predict (y_pred) using (X_test) for evaluation.

Compare predicted (y_pred) to actual (y_test), calculating accuracy, printing Random Forest Classifier
accuracy on test set.

Random Forest Accuracy on Test Set: 58.9% 

In [49]: from sklearn.ensemble import RandomForestClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 

In [50]: # X contains the features, and y contains the target variable 
X = df[['B_Stance', 'B_age', 'B_Reach_cms', 'R_Stance', 'R_age', 
        'R_Reach_cms', 'B_total_rounds_fought', 'R_total_rounds_fought']] 
y = df['A_Winner'] 
 
# Convert categorical variables to numerical using one-hot encoding 
X = pd.get_dummies(X) 

In [51]: # Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y,  
                                test_size=0.2, random_state=42) 
 
# Initialize the RandomForestClassifier 
rf_classifier = RandomForestClassifier(n_estimators=100,  
                                       random_state=42) 

In [52]: # Fit the model on the training data 
rf_classifier.fit(X_train, y_train) 
 
# Predict on the test data 
y_pred = rf_classifier.predict(X_test) 

In [53]: # Evaluate the accuracy 
accuracy = accuracy_score(y_test, y_pred) 
print("") 
print("Random Forest Accuracy on Test Set:",  
      f"{round(accuracy * 100, 1)}%") 



Conclusion 4
This gives us a 58.9% accuracy.

This is a significant improvement (5.4%) given the circumstances. First of all, on a general note, combat
sports are notoriously known for truly anything being possible, David on many of time beats goliath.
however, on a more relevant note if you compare my results to the paper, they got 61.77%, which like I
mentioned before I’m not too far off the result that they got. which given the data they had available to
them and the depth and models that they used; I can firmly say that my model can hold its own.


